5.7 Data Manipulation: QUEL 251

The aggregation operators supported are any, avg, min, max, count, and sum,
similar to the corresponding functions available in SQL. The operators avg, count,
and sum have versicns that eliminate duplicates before applying the operator. These
“‘unique’’ versions are distinguished by the suffix u. The any aggregate operator can
be used to check if any tuple satisfies a given qualification. The value returned by
the any operator is 1 if the qualification is satisfied and O otherwise. The advantage
of using the any operator as opposed to using the count operator is that if the quali-
fication is satisfied, the processing of additional tuples is discontinued, resulting in a
faster evaluation of the query. The format for using these operators is:

aggregation operator (<expression>)

The tuple variables appearing as arguments of an aggregate operator are always local
to it and distinct from any tuple variable with the same name appearing external to
the arguments of the aggregate operator. The aggregate operator could logically be
considered to be processed separately, and a computed single value replaces it. We
illustrate the use of some of these operators in the following examples.

Example 5.42 (a) “‘Obtain the average dish price.”’

range of r is MENU
retrieve (Ave_Price = avg(r.Price))

The terin avg(r.Price) returns the average of the r.Price values. For our
sample database the Ave.Price is 10.90.

(b) *‘Get minimum and maximum dish prices.’’

range of r is MENU
retrieve (Minprice = min(r.Price),
Maxprice = max(r.Price))

(c) ‘‘Get the average rate or pay-for all employees and list it against eachs
employees’ names and rates of pay.”’ :

range of e is EMPLOYEE
retrieve (¢.Name, e.Pay_Rate, Avg_Pay = avg (e.Pay_Rate))

A

The result of this query for our sample database is shown below:

Name Pay_Rate Avg_Pay
Ron 7.50 8.51
Jon 8.79 8.51
Don 4.70 8.51
Pam 4.90 8.51
Pat 4.70 8.51
Ian 9.00 8.51
Pierre 14.00 8.51
Julie 14.50 8.51
u

252 _ Chapter 5 Relational Database Manipulation

Note that in the query in Example 5.42c the aggregation operation is independent ot
the current tuple values. The average rate of pay from all employee tuples is returned
by the avg operator. We see this important difference in the next few queries where
the aggregates are themselves qualified.

Example 5.43

Example 5.44

“‘Find the average rate of pay for employees with the skill of chef.”’
First attempt.

range of ¢ 1s EMPLOYEE
retrieve (¢.Empl_No, e.Skill, Avgchef_Pay =
avg(e.Pay_Rate where e.Skill = 'chef’))

The result relation includes tuples with the above details for all em-
ployees including those who are not chefs. In the above query the qualifi-
cation ‘‘e.Skill = 'chef'”’ applies only to the aggregate, not to the query.
The aggregate qualification is local; it is not affected by and does not affect
the rest of the query. Thus, the scheme of the result is (Empl_No, Skill,
Avgchef_Pay), and each tuple of the result relation contains the same value
for the Avgchef_Pay attribute.

Second attempt: The query

range of e is EMPLOYEE
retrieve (e.Empl_No, e.Skill,

Avgchef_Pay = avg(e.Pay_Rate))
where e.Skill = 'chef’

gets employee number and skill for all empioyees who are chefs and the
average rate of pay of all employees (not just chefs).

The correct query (to get the employee number, skill, ana average sal-
aries of employees who are chefs) should be formulated as given below in
the third attempt. Here we are using two qualification clauses; one is for the
computation of the average salary of employees with a skill of chef and the
other is to ensure that the result contains only tuples for chefs.

Third attempt:

range of ¢ is EMPLOYEE

retrieve (e.Empl_No, e.Skill, Avgchef_Pay =
avg(e.Pay_Rate where e.Skill = 'chef’))
where e.Skill = 'chef’ B

The use of count operator is illustrated in Example 5.44.

*‘Get the total number of employees.”’

range of e is EMPLOYEE
retrieve (cnt = count(e.Empl_No))

Because we defined Empl_No as the key for the relation EMPLOYEE we
expect no duplicate employee records and the unique version of count is
unnecessary. W

5.7 Data Manipulation: QUEL . 253

Another aggregation facility supported in QUEL is called the aggregate func-
tion. This facility allows data to be grouped into categories and aggregations to be

performed separately on each group. The aggregate function is invoked by including
the by clause in the expression for the aggregate operator:

by <by-list>

Unlike simple aggregates, aggregate functions are not local; the by-list links tne
function to the rest of the query. The tuple variable appearing in by-list is global to
the query and is therefore restricted by the qualification of the entire query as well
as by any aggregate qualification. The value of an aggregate function is a set of
values.

The aggregate function any can be used as an existential quantifier. The use of
itinany(. . .) = lorany(. . .) = 0 makes the quantification explicit, as illustrated
in Example 5.45¢.

Example 5.45 (a) ‘*‘Obtain a count of employees on each shift.”

range of ¢ is DUTY_ALLOCATION
retrieve(cnt = count(e.Empl_No by e.Shift))

(b) “‘Find the number of employees on shift number 1.”’

cnt
range of ¢ is DUTY_ALLOCATION
retrieve (cnt = count (e.Empl_No by e.Shift)) 4

where e.Shift = 1

The tuple variable e is global and the by clause links it to the where ‘clause,
limiting the count to those for shift number 1. The result of this query for
the sample database given in Figure 5.4 is as shown above.

A simpler formulation of this query, where the use of a iocal tuple
variable is acceptable, is given below:

range of ¢ is DUTY_ALLOCATION
retrieve (cnt = count (e.Empl_No where ¢.Shift = 1))

(c) “‘Determine the average Pay_Rate by skill.”’

range of e is EMPLOYEE
retrieve (e.Skill, Avg_Rate = avg(e.Pay_Rate
by e.Skill))
Skill Avg_Rate

waiter 7.50
bartende: 8.79
busboy 4.70
hostess 4.90
beliboy 4.70
maitre d’ 9.00
chef 14.25

Chapter 5 Relational Database Manipulation

The query shows the global scope of the tuple variable used in the by clause.
Here the use of the by clause causes the tuple variable associated with it to
be global; it is the same as the one used outside the aggregate function. The
tuple variable associated with e Pay_Rate is strictly local. The avg function
generates a number of values of average pay rate, namely one for each skill.
However, a skill and its corresponding value is displayed only once, as
shown above for the sample EMPLOYEE relation in Figure 5.4.

(d) ‘‘Obtain the average of the total pay rate for each skill.”’

range of e is EMPLOYEE
retrieve (Avg_of_Total = avg(sum (e.Pay_Rate
by e.Skill)))

The above query demonstrates the aggregate function nested in an aggregate
operator. The sum aggregate function generates the sum of Pay_Rates by
Skill giving the set {7.50, 8.79, 4.70, 4.90, 4.70, 9.00, 28.50} as its result
for the sample EMPLOYEE relation of Figure 5.4.

The avg operator is applied to this set to get a single value, indicated
below:

Avg_of_Total]
' 9.73 I

Note that this query is not the same as the following, which generates
the value 8.51, being the overall average value of the Pay_Rate for all
employees:

retrieve(Overall_Avg_Rate = avg(EMPLOYEE.Pay_Rate))
(e) “‘Get the names of employees who are assigned to Posting_No 321.”

range of ¢ is EMPLOYEE
range of d is DUTY_ALLOCATION
retrieve unique (c.Name)
where any (d.Empl_No by e.Empl_No
where d.Posting_No = 321
and d.Empl_No = e.Empl_No) = 1

In this example, the any aggregate function is evaluated over the argument
attribute Empl_No, which is grouped using the by clause. The predicates
specified by the where clause must be satisfied by each value of the argu-
ment. For our sample database, the result of the query is the employee
names lan and Ron.

The following can be used to find the names of employees who are not
assigned to Posting_No 321:

range of ¢ is EMPLOYEE
range of d is DUTY_ALLOCATION

_retrieve unique (e.Name)
- L ‘

5.7 Data Manipulation: QUEL ass

where any (d.Empl_No by e.Empl_No
where d.Posting_No = 321
and d.Empl_No = e.Empl_No) = 0

For our sample database, the result of the query is the employee names
Don, Jon, Julie, Pam, Pat, Pierre. Note that the function count could have
been used here instead of any giving the same resuit.

(f) ““Get the Empl_No of the employees who are assigned a duty on at
least one date in addition to 19860419. The first version for this query uses
the count operator and accesses each tuple of the relation. The second ver-
sion, which uses the any operator, will terminste the evaluation of the where
clause when it accesses the first tuple satisfying the qualification. The result
in each case is the employee numbers 123461 and 123471.

First version:

range of d is DUTY_ALLOCATION -
retrieve (d.Empl_No)
where d.Day = 19860419

and count(d.Day by d.Empl_No) > 1

Second version:

range of d is DUTY_ALLOCATION
retrieve (d.Empl_No)
where d.Day = 19860419

and any(d.Day by d.Empl_No where d.Day + 19860419) =1 m

°

5.7.7 Retrieve into Temporary Relation

So far we have not considered what happens to the retrieved data; in an interactive
environment the results would have been listed on the user’s output device. It is also
possible to assign the result of the retrieval to a relation. The format of such a
retrieve command is:

retrieve into <new-relation > (<target list>)
[where <condition>] '

The new relation will be created with the correct attribute names and the result of
the query put into this retation. The content of the new relation will be similar to a
simple retrieve statement.

This scheme of using a relation to accept the result of a retrieve statement can
be used in places where SQL uses a nested subquery, as illustrated in the next ex-
ample.

Example 5.46 “‘Get total amount for Bill table 12 for the.date 19860419.’° Here we create
a temporary relation ITEMIZED_BILL and subsequently use it to find the
total amount for the bill. b ’

Chapter 5 Relational Database Manipulation

5.7.8

range of b is BILL
range of m is MENU
range of o is ORDR
retrieve into ITEMIZED_BILL(b.Bill#,m.Description,m.Price,
0.Qty, Dish_Total = m.Price*o.Qty)
where b.Table# = 12
and b.Day = 19860419
and o.Dish# = m.Dish#
and b.Bill# = o.Bill#

range of i is ITEMIZED_BILL
retrieve unique(i.Bill#, Total_Amount = sum(i.Dish_Total)) B

Updates

So far we have seen the QUEL data retrieval commands. Data in relations can also
be changed using the three update commands append, replace, and delete. The for-
mat of the append command is:

append to <relation name> (<value list>)
[where <condition>]

and the value list takes the form
<value list> - = <attribute name> = <value expression> [,<value list>]

Append is used to insert new tuples into a relation. The replace and delete
commands are used to replace or delete existing tuples. Thus the append requires the
use of a relation name and the replace and delete commands should use a tuple
variable. The format of the replace and delete commands is:

replace <tuple variable> (<value list>)
[where <condition>]

delete <tuple variable>
[where <condition>]

Example 5.47 (a) ‘“Append a tuple to DUTY_ALLOCATION for Posting_No = 322,

Empl_No = 123457, Shift = 2, Day = 19860421.”

append to DUTY_ALLOCATION
(Posting_No = 322, Empl_No = 123457, Shift = 2,
Day = 19860421)

(b) “‘Copy the DUTY_ALLOCATIUN relation into NEW_DUTY_ALLO-
CATION.”

range of d is DUTY_ALLOCATION
append to NEW_DUTY_ALLOCATION (d.all)

. In this example, all tuples from the DUTY_ALLOCATION relation are cop-
| ied into NEW_DUTY_ALLOCATION.

5.7 Data Manipulation: Quel. 257

i

(c) ““Copy only the tuples for shift 1 into the NEW_DUTY_ALLOCA-
TION.”

range of d is DUTY_ALLOCATION
append to NEW_DUTY_ALLOCATION (d.all)
where d.Shift = 1 W

Example 5.48 illustrates the use of the replace command.

Example 5.48 (a) “‘Increase the pay rate of all employees by 10%.”’

range of e is EMPLOYEE
replace ¢ (Pay_Rate = 1.1 * e.Pay_Rate)

The value for the attribute Pay_Rate in each tuple is increased by 10%.
The other attributes are unchanged.

(b) ““Increase the pay rate of all waiters by 10%.”’

range of e is EMPLOYEE
replace e (Pay_Rate = 1.1 * e.Pay_Rate)
where ¢.Skill = 'waiter’

(c) To insert the total amount and the suggested tip into BILL with Bill#
= 9234 from the relation ITEMIZED_BILL, we can use the following
statements:

range of i is ITEMIZED_BILL
range of b is BILL
replace b
(Total = sum(i.Dish_Total where i.Bill# = 9234),
Tip = 0.15*sum(i.Dish_Total where i.Bill# = 9234))
where b.Bill# = 9234 B

Example 5.49 illustrates the delete command.

Example 5.49 ““Remove the record for employee with Empl_No 123457."

range of ¢ is EMPLOYEE
delete ¢
where e.Empl_No = 123457

and to delete all tuples from a relation:

range of e is EMPLOYEE
delete ¢

The result of the last command is an empty relation. &

260 Chapter 5 Relational Database Manipulation

retrieve (Emp_No = e.Empl_No,
Emp_Profession = e.Skill)
where e.Empl_No > 123300
and e.Empl_No'< 123460 =

Such query modifications produce an appropriate external scheme to conceptual
scheme mapping in a orderly manner. Updates via view, create problems similar to
the ones we discussed under SQL.

Once defined, a view can be used until it is destroyed by means of a destroy

statement as follows:
destroy EMP_VIEW

- 85.7.10 Remarks

Other QUEL commands deal with database creation, database removal, interface to
the file system, index organization, and index modification. These do not deal spe-
cifically with data manipulation, so we have -not emphasized them here.

The commercial version of INGRES provides a form-based interface, a report
writer, interactive as well as embedded SQL and QUEL with HLL interface to
BASIC, C, COBOL, Pascal, and PL/I. The database response has been much im-
proved (about one order) over the INGRES used in the academic milieu.

S ,
5-8 Embedded Data Manipulation Language

SQL and QUEL only provide facilities to define and retrieve data interactively. To
extend the data manipulation operations of these languages, for example to separately
process each tuple of a relation, these languages have to be used with a traditional
high-level language (HLL). Such a language is called a host language and the pro-
gram is called the host program. The use of a database system in applications writ-
ten in an HLL requires that the DML statements be embedded in the host programs.
All the statements and features that are available to an interactive user must be avail-
able to the application programmer using the HLL. The DML statements are distin-
guished by means of a special symbol or are invoked by means of a subroutine call.

One approach that is commonly used is to mark the DML statements and par-
tially parse them during a precompilation step to look for statements and variables
from the host HLL appearing in DML statements. Such variables are appropriately
identified by looking for a variable declaration in the host program or by appropri-
ately marking such variables (e.g., with a colon). In this way, it is possible to use
identical names for both the HLL variables and the objects in the database.

The need for domain compatibility between host language variables and con-
stants and database attributes has to be observed in the design and writing of HLL
programs with embedded DML statements. Any data type mismatch between HLL
variables and DML attributes must be resolved. One way to handle type mismatch is
10 do type conversion at run time. Such type conversions must either be established

